New Modular Fixed-Point Theorem in the Variable Exponent Spaces ℓp(.)
نویسندگان
چکیده
In this work, we prove a fixed-point theorem in the variable exponent spaces ℓp(.), when p−=1 without further conditions. This result is new and adds more information regarding modular structure of these spaces. To be precise, our concerns ρ-nonexpansive mappings defined on convex subsets ℓp(.) that satisfy specific condition which call “condition uniform decrease”.
منابع مشابه
Transversal spaces and common fixed point Theorem
In this paper we formulate and prove some xed and common xed pointTheorems for self-mappings dened on complete lower Transversal functionalprobabilistic spaces.
متن کاملFixed point theorems for new J-type mappings in modular spaces
In this paper, we introduce $rho$-altering $J$-type mappings in modular spaces. We prove some fixed point theorems for $rho$-altering and $rho$-altering $J$-type mappings in modular spaces. We also furnish illustrative examples to express relationship between these mappings. As a consequence, the results are applied to the existence of solution of an integral equation arising from an ODE ...
متن کاملA RELATED FIXED POINT THEOREM IN n FUZZY METRIC SPACES
We prove a related fixed point theorem for n mappings which arenot necessarily continuous in n fuzzy metric spaces using an implicit relationone of them is a sequentially compact fuzzy metric space which generalizeresults of Aliouche, et al. [2], Rao et al. [14] and [15].
متن کاملFIXED POINT TYPE THEOREM IN S-METRIC SPACES
A variant of fixed point theorem is proved in the setting of S-metric spaces
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2022
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math10060869